## SOLUTIONS

## Mathematics

## Section-A

1. For real and equal roots, $\mathrm{D}=0$

$$
\begin{aligned}
& \mathrm{b}^{2}-4 \mathrm{ac}=0 \\
& 4(\mathrm{k}-1)^{2}-4(\mathrm{k}+1) \times 1=0 \\
& \left(\mathrm{k}^{2}+1-2 \mathrm{k}\right)-\mathrm{k}-1=0 \\
& \mathrm{k}^{2}-3 \mathrm{k}=0 \\
& \mathrm{k}(\mathrm{k}-3)=0 \\
& \mathrm{k}=0, \mathrm{k}=3 \\
& \mathrm{k}=3
\end{aligned} \quad \begin{aligned}
\\
\begin{aligned}
\mathrm{b}^{2}-4 \mathrm{ac} & \quad \begin{array}{l}
\text { Or }
\end{array} \\
& =16-4 \times 4 \times 1 \\
& =16-16 \\
& =0
\end{aligned}
\end{aligned}
$$

Roots of the given equation are real \& equal.
2. Here, $\mathrm{OA} \perp \mathrm{OP}$ and $\mathrm{OB} \perp \mathrm{PB} \quad[\because$ Tangent $\&$ radius angle $]$

In $\triangle \mathrm{PAO}, \mathrm{OP}^{2}=\mathrm{AP}^{2}+\mathrm{OA}^{2}=15^{2}+8^{2}=225+64=289$
$\Rightarrow \mathrm{OP}=17 \mathrm{~cm}$
In $\triangle \mathrm{PBO}, \mathrm{PB}^{2}=\mathrm{OP}^{2}-\mathrm{OB}^{2}=17^{2}-7^{2}=289-49=240$
$\Rightarrow \quad \mathrm{PB}=\sqrt{240}=4 \sqrt{15} \mathrm{~cm}$
3. $\mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$4=a+6 \times(-4)$
$4=a-24$
$\mathrm{a}=28$
4. Empirical formula :

$$
\begin{aligned}
\text { Mode } & =3 \text { Median }-2 \text { Mean } \\
& =3(9.6)-2(10.5) \\
& =28.8-21.0 \\
& =7.8
\end{aligned}
$$

5. Radius of the base of cone $=\frac{18}{2}=9 \mathrm{~cm}$


Height of cone $(h)=12 \mathrm{~cm}$
Slant height $(l)=\sqrt{r^{2}+h^{2}}$
$\Rightarrow l=\sqrt{9^{2}+12^{2}}=\sqrt{81+144}=\sqrt{225}=15 \mathrm{~cm}$
TSA of toy $=$ CSA of hemisphere + CSA of cone

$$
=2 \pi r^{2}+\pi r l=\pi r(2 \mathrm{r}+l)
$$

$$
=3.14 \times 9(2 \times 9+15)
$$

$$
\begin{aligned}
& =3.14 \times 9 \times 33 \\
& =932.58 \mathrm{~cm}^{2}
\end{aligned}
$$

6. Let the three consecutive numbers be $\mathrm{x}, \mathrm{x}+1$ and $\mathrm{x}+2$
$\therefore \quad(\mathrm{x}+1)^{2}=(\mathrm{x}+2)^{2}-\mathrm{x}^{2}+60$
$\Rightarrow x^{2}+1+2 x=x^{2}+4+4 x-x^{2}+60$
$\Rightarrow x^{2}-2 x-63=0$
$\Rightarrow \quad(\mathrm{x}-9)(\mathrm{x}+7)=0$
$x=9 \quad$ [Rejecting -7$]$
Hence, the numbers are 9,10 and 11 .

## Or

Let the usual speed of plane be $\mathrm{xm} / \mathrm{hr}$ and the increased speed be $\mathrm{y} \mathrm{km} / \mathrm{hr}$.
$\Rightarrow \mathrm{y}=(\mathrm{x}+250) \mathrm{km} / \mathrm{hr}$
distance $=1500 \mathrm{~km}$ [Given]
Acc. to condition given -
(Scheduled time) - (time taken at increased speed) $=30 \mathrm{~min}$.

$$
=0.5 \mathrm{hrs} .
$$

Also, $\quad \frac{1500}{x}-\frac{1500}{y}=\frac{1}{2}$

$$
\frac{1500}{x}-\frac{1500}{x+250}=\frac{1}{2} \quad\left[\because \text { time }=\frac{\text { distance }}{\text { speed }}\right]
$$

$\Rightarrow$ On solving, we get
$(x-750)(x+1000)=0$
$\Rightarrow \mathrm{x}=750$, or $\mathrm{x}=-1000$ (neglect)
So, the usual speed is $750 \mathrm{~km} / \mathrm{hr}$.

## $\underline{\text { Section - B }}$

7. Let $\mathrm{BD}=$ width of river $=80 \mathrm{~m}$

$$
\mathrm{AB}=\mathrm{CD}=\text { height of trees }=\mathrm{h}
$$

$$
\mathrm{OB}=\mathrm{x}, \mathrm{OD}=80-\mathrm{x} .
$$



In $\triangle \mathrm{ABO}, \tan 60^{\circ}=\frac{\mathrm{h}}{\mathrm{x}}$
$\Rightarrow \quad \sqrt{3}=\frac{\mathrm{h}}{\mathrm{x}}$
$\Rightarrow \quad \mathrm{h}=\sqrt{3} \mathrm{x}$
In $\triangle C D O, \tan 30^{\circ}=\frac{h}{80-x}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{\mathrm{h}}{80-\mathrm{x}}$

On solving (1) \& (2)
$\mathrm{x}=20 \mathrm{~m}$
So, $h=\sqrt{3} \times 20=20 \sqrt{3}=20 \times 1.732=34.6 \mathrm{~m}$
Thus, height of trees $=34.6 \mathrm{~m}$
and
Required distances be 20 m and 60 m .
8.

| class | class mark $\left(x_{i}\right)$ | frequency $\left(f_{i}\right)$ | $f_{i} x_{i}$ |
| :---: | :---: | :---: | :---: |
| $0-20$ | 10 | 16 | 160 |
| $20-40$ | 30 | 14 | 420 |
| $40-60$ | 50 | 24 | 1200 |
| $60-80$ | 70 | 26 | 1820 |
| $80-100$ | 90 | $x$ | $90 x$ |
|  |  | $\Sigma f_{i}=80+x$ | $\Sigma f_{i} x_{i}=3600+90 x$ |

Mean $=\frac{\Sigma \mathrm{x}_{\mathrm{i}} \mathrm{f}_{\mathrm{i}}}{\Sigma \mathrm{f}_{\mathrm{i}}} \Rightarrow 54=\frac{3600+90 \mathrm{x}}{80+\mathrm{x}}$
$\Rightarrow \mathrm{x}=20$.
9.


Steps of constructions :
(1) Draw a line segment AB of 9 cm
(2) Taking A and B as centres draw two circles of radii $5 \mathrm{~cm} \& 3 \mathrm{~cm}$ respectively.
(3) Perpendicular bisect the line AB . Let midpoint of AB be C .
(4) Taking C as centre, draw a circle of radius AC which intersects the two circles at point $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S .
(5) Joint BP, BQ, AS and AR.

Hence. BP, BQ and AR, AS are the required tangents.
10. Here, Modal class $=40-50$
$\therefore \quad l=40, f_{1}=\mathrm{p}, f_{0}=12, f_{2}=18$ and $h=10$
Mode $=l+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times h \Rightarrow \quad 48=40+\frac{p-12}{2 p-12-8} \times 10$
$\Rightarrow 8=\frac{10 p-120}{2 p-30} \Rightarrow 16 p-240=10 p-120$
$\Rightarrow 6 p=120$
$\Rightarrow \quad p=20$

## Section - C

11. Diameter of hemisphere $=$ Edge of cube $=7 \mathrm{~cm}$

Radius $=\frac{7}{2} \mathrm{~cm}$.


Req. S.A. $=$ SA. of cube - area of top of hemisphere + CSA of hemisphere.

$$
\begin{aligned}
& =6 \mathrm{a}^{2}-\pi \mathrm{r}^{2}+2 \pi \mathrm{r}^{2}=6 \mathrm{a}^{2}+\pi \mathrm{r}^{2} \\
& =6(7)^{2}+\frac{22}{7} \times\left(\frac{7}{2}\right)^{2}=294+38.5 \\
& =332.5 \mathrm{~cm}^{2}
\end{aligned}
$$

12. In $\triangle \mathrm{OPQ}$.


$$
\begin{aligned}
& \angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{O}=180^{\circ} \quad[\angle \mathrm{O}=\angle \mathrm{Q}, \text { isosceles triangle }] \\
& \Rightarrow \quad 2 \angle \mathrm{Q}+\angle \mathrm{P}=180^{\circ} \\
& \Rightarrow 2 \angle \mathrm{Q}=180-90^{\circ} \\
& \Rightarrow \angle \mathrm{Q}=45^{\circ}
\end{aligned}
$$

## Case Study - 1

13. 

(i) In $\triangle \mathrm{EFD}, \tan 30^{\circ}=\frac{\mathrm{ED}}{\mathrm{DF}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{\mathrm{h}}{\mathrm{DF}}$
$\Rightarrow \quad \mathrm{DF}=\mathrm{h} \sqrt{3} \mathrm{~m}$
Now, In $\triangle \mathrm{GCE}, \quad \tan 60^{\circ}=\frac{\mathrm{EC}}{\mathrm{GC}}=\frac{\mathrm{h}+4}{\mathrm{DF}}$
$\Rightarrow \quad \sqrt{3}=\frac{\mathrm{h}+4}{\sqrt{3} \mathrm{~h}}$
$\Rightarrow 3 \mathrm{~h}=\mathrm{h}+4$
$\Rightarrow \mathrm{h}=2 \mathrm{~m}$
(ii) Height of the balloon from the ground :-
$=B C+C D+D E=2+4+2=8 m$

## Case Study - 2

14. No. of pairs of shoes in $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$ row,..... are $3,5,7, \ldots \ldots$

So, A.P. is formed with $\mathrm{a}=3, \mathrm{~d}=2$
(i) $\mathrm{S}_{\mathrm{n}}=120$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$120=\frac{\mathrm{n}}{2}[2(3)+(\mathrm{n}-1) 2]$
$\Rightarrow \mathrm{n}^{2}+2 \mathrm{n}-120=0$
$\Rightarrow \quad(\mathrm{n}+12)(\mathrm{n}-10)=0$
$\mathrm{n}=-12$ (neglect) or $\mathrm{n}=10$.
So, 10 rows required to put 120 pairs.
(ii) No. of pair in $17^{\text {th }}$ row :
$a_{17}=a+16 d$
$a_{17}=35$
Also, no. of pair in $10^{\text {th }}$ row :
$\mathrm{a}_{10}=\mathrm{a}+9 \mathrm{~d}$
$\mathrm{a}_{10}=21$
$\therefore \quad$ Req. diff $=35-21=14$.

