SOLUTIONS Mathematics

<u>Section – A</u>

1. For real and equal roots, D = 0 $b^{2} - 4ac = 0$ $4 (k - 1)^{2} - 4(k + 1) \times 1 = 0$ $(k^{2} + 1 - 2k) - k - 1 = 0$ $k^{2} - 3k = 0$ k (k - 3) = 0 k = 0, k = 3 k = 3 [:: k = 0 neglect] $b^{2} - 4ac = 16 - 4 \times 4 \times 1$ = 16 - 16= 0

Roots of the given equation are real & equal.

2. Here, $OA \perp OP$ and $OB \perp PB$ [: Tangent & radius angle] In $\triangle PAO$, $OP^2 = AP^2 + OA^2 = 15^2 + 8^2 = 225 + 64 = 289$ $\Rightarrow OP = 17 \text{ cm}$ In $\triangle PBO$, $PB^2 = OP^2 - OB^2 = 17^2 - 7^2 = 289 - 49 = 240$ $\Rightarrow PB = \sqrt{240} = 4\sqrt{15} \text{ cm}$

3.
$$a_n = a + (n - 1) d$$

 $4 = a + 6 \times (-4)$
 $4 = a - 24$
 $a = 28$

4. Empirical formula :

$$Mode = 3 Median - 2 Mean = 3 (9.6) - 2 (10.5) = 28.8 - 21.0 = 7.8$$

5. Radius of the base of cone = $\frac{18}{2} = 9$ cm

Height of cone (h) = 12 cm Slant height $(l) = \sqrt{r^2 + h^2}$ $\Rightarrow l = \sqrt{9^2 + 12^2} = \sqrt{81 + 144} = \sqrt{225} = 15$ cm TSA of toy = CSA of hemisphere + CSA of cone $= 2\pi r^2 + \pi r l = \pi r (2r + l)$ $= 3.14 \times 9 (2 \times 9 + 15)$

$$= 3.14 \times 9 \times 33$$

= 932.58 cm²

6. Let the three consecutive numbers be x, x + 1 and x + 2

 $\therefore (x + 1)^{2} = (x + 2)^{2} - x^{2} + 60$ $\Rightarrow x^{2} + 1 + 2x = x^{2} + 4 + 4x - x^{2} + 60$ $\Rightarrow x^{2} - 2x - 63 = 0$ $\Rightarrow (x - 9) (x + 7) = 0$ x = 9 [Rejecting -7]

Hence, the numbers are 9,1 0 and 11.

0r

Let the usual speed of plane be x km/hr and the increased speed be y km/hr.

$$\Rightarrow$$
 y = (x + 250) km/hr

distance = 1500 km [Given]

Acc. to condition given –

(Scheduled time) – (time taken at increased speed) = 30 min.

Also,
$$\frac{1500}{x} - \frac{1500}{y} = \frac{1}{2}$$
$$\frac{1500}{x} - \frac{1500}{x + 250} = \frac{1}{2} \qquad \left[\because \text{ time} = \frac{\text{distance}}{\text{speed}}\right]$$
$$\implies \text{ On solving, we get}$$

 $\Rightarrow \text{ On solving, we get}$ (x - 750) (x + 1000) = 0

$$(x - 750)(x + 1000) = 0$$

 \Rightarrow x = 750, or x = -1000 (neglect)

So, the usual speed is 750 km/hr.

<u>Section – B</u>

On solving (1) & (2) x = 20 mSo, $h = \sqrt{3} \times 20 = 20\sqrt{3} = 20 \times 1.732 = 34.6 \text{ m}$ Thus, height of trees = 34.6 m and Required distances be 20m and 60m.

8.

class	class mark (x_i)	$frequency(f_i)$	$f_i x_i$
0-20	10	16	160
20 - 40	30	14	420
40 - 60	50	24	1200
60 - 80	70	26	1820
80 - 100	90	x	90 <i>x</i>
		$\Sigma f_i = 80 + x$	$\Sigma f_i x_i = 3600 + 90x$

$$Mean = \frac{\Sigma x_i f_i}{\Sigma f_i} \Longrightarrow 54 = \frac{3600 + 90x}{80 + x}$$
$$\implies x = 20.$$

9.

Steps of constructions :

- (1) Draw a line segment AB of 9 cm
- (2) Taking A and B as centres draw two circles of radii 5 cm & 3 cm respectively.
- (3) Perpendicular bisect the line AB. Let midpoint of AB be C.
- (4) Taking C as centre, draw a circle of radius AC which intersects the two circles at point P, Q, R and S.
- (5) Joint BP, BQ, AS and AR.Hence. BP, BQ and AR, AS are the required tangents.

10. Here, Modal class = 40 - 50

$$\therefore \quad l = 40, f_1 = p, f_0 = 12, f_2 = 18 \text{ and } h = 10$$

$$Mode = l + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h \implies 48 = 40 + \frac{p - 12}{2p - 12 - 8} \times 10$$

$$\implies \quad 8 = \frac{10p - 120}{2p - 30} \implies 16p - 240 = 10p - 120$$

$$\implies \quad 6p = 120$$

$$\implies \quad p = 20$$

Section – C

- 11. Diameter of hemisphere = Edge of cube = 7 cm Radius = $\frac{7}{2}$ cm. 7/2 cm 7/2 cm 7 cm 7 cm 7 cm
 - Req. S.A. = $\stackrel{7 \text{ cm}}{\text{SA. of cube}}$ area of top of hemisphere + CSA of hemisphere. = $6a^2 - \pi r^2 + 2\pi r^2 = 6a^2 + \pi r^2$ = $6(7)^2 + \frac{22}{7} \times \left(\frac{7}{2}\right)^2 = 294 + 38.5$ = 332.5 cm^2
- 12. In $\triangle OPQ$.

Case Study – 1

13.

(i) In
$$\triangle EFD$$
, $\tan 30^\circ = \frac{ED}{DF}$
 $\Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{DF}$
 $\Rightarrow DF = h\sqrt{3} m$
Now, In $\triangle GCE$, $\tan 60^\circ = \frac{EC}{GC} = \frac{h+4}{DF}$
 $\Rightarrow \sqrt{3} = \frac{h+4}{\sqrt{3}h}$
 $\Rightarrow 3h = h + 4$
 $\Rightarrow h = 2m$

(ii) Height of the balloon from the ground :-= BC + CD + DE = 2 + 4 + 2 = 8m

Case Study – 2

14. No. of pairs of shoes in 1^{st} , 2^{nd} , 3^{rd} row,.... are 3, 5, 7, So, A.P. is formed with a = 3, d = 2

(i)
$$S_n = 120$$

 $S_n = \frac{n}{2} [2a + (n-1)d]$
 $120 = \frac{n}{2} [2(3) + (n-1)2]$
 $\Rightarrow n^2 + 2n - 120 = 0$
 $\Rightarrow (n + 12) (n - 10) = 0$
 $n = -12 (neglect) \text{ or } n = 10.$
So, 10 rows required to put 120 pairs.

(ii) No. of pair in
$$17^{th}$$
 row :
 $a_{17} = a + 16d$
 $a_{17} = 35$
Also, no. of pair in 10^{th} row :
 $a_{10} = a + 9d$
 $a_{10} = 21$

 \therefore Req. diff = 35 - 21 = 14.